Quantitative Understanding in Biology
Module I: Statistics
Lecture I: Characterizing a Distribution

Mean and Standard Distribution
Biological investigation often involves taking measurements from a sample of a population.

The mean of these measurements is, of course, the most common way to characterize their distribution:

The concept is easy to understand and should be familiar to everyone. However, be careful when
implementing it on a computer. In particular, make sure you know how the program you are using deals
with missing values:

> X <- rnorn(10) Generates 10 random samples from a normal
> X . . .
[1] -0.05102204 0.38152698 0.66149378 distribution.
[4] 0.41893786 -1.01743583 -0.55409120
[7] -0.14993880 -0.31772140 - 0. 44995050
[10] -0.69896096

> nmean(x) Computes the mean
[1] -0.1777162
> x[3] <- NA Indicate that one of the values is unknown
> X
[1] -0.05102204 0.38152698 NA

[4] 0.41893786 -1.01743583 -0.55409120
[7] -0.14993880 -0.31772140 - 0. 44995050
[10] -0. 69896096

> mean(x) The mean cannot be computed, unless you ask

[1] NA o .
> mean(x, na.rmETRUE) that missing values be ignored.

[1] -0.2709618

> sun(x) Computing the mean ‘manually’ requires careful

[1] NA .
> sun(x, na.rmeTRUE) attention to NAs.

[1] -2.438656
> | engt h(x)

[1] 10

> | ength(na.omt(x))

[1] 9

> sum( X, na.rneTRUE)/| ength(na.omt(x))
[1] -0.2709618

Similar principles hold when using Microsoft Excel. Try using the AVERAGE( ) and SUM ) functions.
What is the difference in behavior when you leave a cell empty vs. when you use the NA() function.




Characterizing a Distribution

In addition to the mean, the standard deviation and (to a lesser extent) the variance are also commonly
used to describe a distribution of values:
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Observe that the variance is an average of the square of the distance from the mean. All terms in the
summation are positive because they are squared.

When computing the variance or standard deviation (SD) of a whole population, the denominator would
be N instead of N-1. The variance of a sample from a population is always a little bit larger, because the
denominator is a little bit smaller. There are theoretical reasons for this having to do with degrees of
freedom; we will chalk it up to a “weird statistics thing”.

Observe that the standard deviation has the same units of measure as the values in the sample and of
the mean. It gives us a measure of how spread out our data is, in units that are natural to reason with.

In the physical sciences (physics, chemistry, etc.), the primary source of variation in collected data is
often due to “measurement error”: sample preparation, instrumentation, etc. This implies that if you
are more careful in performing your experiments and you have better instrumentation, you can drive
the variation in your data towards zero. Think about measuring the boiling point of pure water as an
example. Some argue that if you need complex statistical analysis to interpret the results of such an
experiment, you’ve performed the experiment badly, or you’ve done the wrong experiment.

Although one might imagine that an experimenter would always use the best possible measurement
technology available (or affordable), this is not always the case. When developing protocols for CT scans,
one must consider that the measurement process can have deleterious effects on the patient due to the
radiation dose required to carry out the scan. While more precise imaging, and thus measurements (say
of a tumor size), can often be achieved by increasing the radiation dose, scans are selected to provide
just enough resolution to make the medical diagnosis in question. In this case, better statistics means
less radiation, and improved patient care.

In biology, the primary source of variation is often “biological diversity”. Cells, and in particular, patients,
are rarely in identical states, and you expect a non-trivial variation, even under perfect experimental
conditions. In biology, we must learn to cope with this naturally occurring variation.

Communicating a Distribution
X and SD have a particular meaning when the distribution is normal. For the moment, we’ll not assume
anything about normality, and consider how to represent a distribution of values.
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Characterizing a Distribution

Histograms convey information about a distribution graphically. They are easy to understand, but can be
problematic because binning is arbitrary. There are essentially two arbitrary parameters that you select
when you prepare a histogram: the width of the bins, and the alighnment, or starting location, of the
bins. For non-large N, the perceptions suggested by a histogram can be misleading.

> set.seed(0) Three histograms are prepared; the same data are
> x <- rnorm(50) presented, but, depending on the binning, a
> hist(x, breaks=seq(-3,3,length.out=6)) different underlying distribution is suggested.

> hist(x, breaks=seq(-3,3,length.out=7))
> hist(x, breaks=seq(-3,3,length.out=12))

When preparing histograms, be sure that the labels on the x-axis are chosen so that the binning intervals
can be easily inferred. The first plot would better be prepared including one additional option: Xaxp =
c(- 3, 3, 5). See the entry for par in the R help for this any many other plotting options; type ?par at
the R prompt.

R has a less arbitrary function, densi t y, which can be useful for getting the feel for the shape of an
underlying distribution. This function does have one somewhat arbitrary parameter (the bandwidth); it
is fairly robust and default usually works reasonably well.

> hi st(x, breaks=seq(-3, 3,1ength.out=13), xaxp=c(-3,3,4),
probability=TRUE); |ines(density(x))

Note that we add the pr obabi | i t y option to the hi st function; this plots a normalized histogram,
which is convenient, as this is the scale needed by the overlayed density function.

You should be wary of using summary statistics such as X and SD for samples that don’t have large N or
that are not known to be normally distributed. For N=50, as above, other options include:

e Atable of all the values: sort ( X)
e A more condensed version of the above: st en( x)

For graphical presentations, do not underestimate the power of showing all of your data. With judicious
plotting choices, you can often accomplish this for N in the thousands.

stripchart (x) shows all data points. For N=50,stri pchart(x, pch="|") might be more
appropriate.

If you must prepare a histogram (it is often expected), overlaying the density curve and sneaking in a
stripchart-like display can be a significant enhancement:

> hist(x, breaks=seq(-3, 3,1ength.out=13), xaxp=c(-3,3,4),
probability=TRUE); |ines(density(x))

> rug(x)

For larger N, a boxplot can be appropriate:

© Copyright 2008, 2011 - ] Banfelder, Weill Cornell Medical College Page 3




Characterizing a Distribution

> X <- rnormnm(1000); boxpl ot (x)

You can overlay (using the add=TRUE option) a stripchart to show all data points. With many data
points, a smaller plotting symbol and the j i t t er option are helpful.

> stripchart(x, vertical =TRUE, pch=".", method="jitter", add=TRUE)

Note that boxplots show quartiles. The heavy bar in the middle is the median, not the mean. The box
above the median is the third quartile; 25% of the data falls in it. Similarly, the box below the median
holds the second quartile. The whiskers are chosen such that, if the underlying distribution is normal,
roughly 1 in 100 data points will fall outside their range. These are putative outliers that you may want
to further inspect.

The concept of quartiles can be generalized to quantiles. Another way to characterize distributions is by
reporting quantiles; quartiles and deciles are favorites:

> quantile(x, (0:4)/4)

0% 25% 50% 75% 100%
-2.99767066 -0.69364940 -0.01546943 0.65434645 3.02193840

> gquantile(x, (0:10)/10)

0% 10% 20% 30% 40%

-2.99767066 -1.20812215 -0.87560155 -0.53779019 -0.26516716

50% 60% 70% 80% 90%

-0. 01546943 0.22308820 0.48496338 0.78565873 1.18193333
100%
3.02193840

SD is a representation of how spread out your data are. If the underlying distribution is normal and N is
large, then 95% of the samples are expected to fall within the range: X + 1.96 - SD.

> X <- rnornm(100000)

> mean( x)

[1] 0.001076443

> sd(x)

[1] 1.000764

> quantil e(x, (0:40)/40)
0% 2.5% 5% 7.5%

-4.754242304 -1.964334170 -1.650846246 -1.442248402
10% 12. 5% 15% 17. 5%

-1.280851350 -1.147004677 -1.035610266 -0.935114705
20% 22.5% 25% 27.5%

- 0. 841499568 -0. 754756972 -0.679036632 -0.600832587
30% 32. 5% 35% 37.5%

-0.526768394 -0.455779370 -0. 385446675 -0. 317184080
40% 42. 5% 45% 47. 5%

-0. 252345155 -0.187829088 -0.123271243 -0. 058831369
50% 52. 5% 55% 57. 5%

0. 003971025 0. 066956941 0.129356108 0.192253012
60% 62. 5% 65% 67. 5%
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Characterizing a Distribution

0. 257026661 0.321183502 0.388136537 0.458046456

70% 72. 5% 75% 77.5%

0. 528821444 0.601289931 0.677759750 O0.758717314

80% 82. 5% 85% 87.5%

0.842717888 0.933548945 1.035464420 1.145487565

90% 92. 5% 95% 97. 5%

1.277188560 1.435926218 1.637997636 1.964227885
100%

4.336132109

We expect the mean to be zero, the SD to be unity, the 2.5% quantile to be at -1.96, and the 97.5%
quantile to be at +1.96.

Standard Deviation vs. Standard Error of the Mean
An important, but very different, question that statistics can help us with is how well we can estimate
the mean. Two factors influence this: how spread out the data are, and how much data we have. A new
qguantity, the Standard Error of the Mean, is introduced:

SD

SEM = —
Vn

For large N, we can be 95% sure that the true mean of the underlying population is in the range...
Xx+196-SEM
..where x is the sample mean. We will formalize and extend this result in another session.

Here is an experiment to demonstrate this. We generate a sample from a known normal distribution
where the mean is zero and the standard deviation is unity, then compute a confidence interval (Cl) for
the mean. We expect that this Cl will contain the true mean (which we know to be zero) roughly 19 out
of 20 times.

> for (i in 1:100) {

+ X <- rnorn(10000)

+ print(nmean(x) + c(-1.96, 0, 1.96) * sd(x) / sqgrt(length(x)))
+}

[1] -0.024301502 -0.004775178 0.014751146 [1] -0.026578015 -0.006881238 0.012815538
[1] -0.026626053 -0.006999663 0.012626728 [1] -0.0205013516 -0.0007041864 0.0190929788
[1] -0.021006574 -0.001665145 0.017676283 [1] -0.016042673 0.003399703 0.022842080
[1] -0.023918612 -0.004202195 0.015514221 [1] -0.002855254 0.016817403 0.036490060
[1] -0.0389625436 -0.0193659724 0.0002305987 [1] -0.034024678 -0.014692288 0.004640103
[1] -0.035444374 -0.015853783 0.003736808 [1] -0.007221995 0.012408992 0.032039980
[1] -0.02646289 -0.00695293 0.01255703 [1] -0.009129527 0.010746901 0.030623328
[1] -0.014265428 0.005169996 0.024605420 [1] -0.013079007 0.006672627 0.026424261
[1] -0.006374521 0.013183087 0.032740695 [1] -0.022694849 -0.003307884 0.016079082
[1] -0.027726532 -0.008195687 0.011335157 [1] -0.027884371 -0.008532565 0.010819241
[1] -0.028349554 -0.008883653 0.010582248 [1] 0.00974305 0.02926519 0.04878734

[1] -0.031477297 -0.011958221 0.007560854 [1] -0.027234717 -0.007591476 0.012051764
[1] -0.024676765 -0.005038202 0.014600361 [1] -0.003150395 0.016241695 0.035633785
[1] 0.001781225 0. 021552050 0. 041322876 [1] -0.011179020 0.008338268 0.027855557
[1] -0.027024247 -0.007516368 0.011991510 [1] -0.009063754 0.010312788 0.029689330
[1] -0.011989703 0.007447232 0.026884167 [1] -0.016275525 0.003311566 0.022898658
[1] -0.015610630 0.004039557 0.023689743 [1] -0.041542741 -0.021898218 -0. 002253696
[1] -0.013781684 0.005884203 0.025550091 [1] -0.0004399937 0.0190984618 0.0386369172
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Characterizing a Distribution

[1] -0.0395574949 -0.0198794721 -0. 0002014492
[1] -0.030405467 -0.010958771 0.008487925
[1] -0.026741095 -0.007219373 0.012302349
[1] -0.0195650260 0.0001406561
0
0
-0
0
0
-0
0
[1] 0.008632623 0.028290878 0
[1] -0.017761529 0.001915428
[1] -0.01060836 0.00924938 0.02910712

[1] -0.0201786752 -0.0005449171 0. 0190888409
[1] -0.022384361 -0
-0

[1] -0.010852923
[1] -0.021023184
[1] -0.032128012
[1] -0.014295601
[1] -0.010071603
[1] -0.023738067
[1] -0.009742657

[1] -0.021063830
[1] -0.016937999
[1] -0.018183755
[1] -0.036550951
[1] -0.022773824
[1] -0.015164353
[1] -0.012301662
[1] -0.017349224
[1] -0.016890972
[1] -0.013442029
[1] -0.014835716
[1] -0.008241882

cooocoocooo0o00

008932587
001362284
012800292
005436455
009548244
004131066
009975540

002820761
001345081

. 002667279
. 001535473
. 016922209
. 003336013

004381009
007435353
002106028

. 002804223
. 006092335
. 004868907

011418128

[eNeoNeolooNoNa)

.04
0

[1] -0.02932350 -0.00965467 0.0
[1] -0.024917504 -0.005348383 0.014220739
[1] -0.030790123 -0.011296159 0.008197805
[1] -0.036026598 -0.016414003 0.003198591

0C000000O0000O0O

0.0198463383
. 028718097

. 018298616

. 006527427

. 025168511

. 029168092

. 015475936

. 029693737
7949132

. 021592384

. 016742839
. 018373668
. 022272557
021254700
002706532
016101799
023926372
027172368
021561280
. 022499418
. 025626700
. 024573530
. 031078138
1001416

. 034872802 -0
. 018245860 O.
. 023516307 -0
. 024021403 -0
. 010607586 0.
. 009601862 0.
. 020615433 -0
. 016035976 0.
. 0203469118 -0.0006296587 0.0190875944
. 03135966 -0.01174369 0.00787228
. 016250733 0.
. 041422524 -0
. 027268162 -0
. 029318299 -0
. 024506008 -0
. 023804302 -0
. 017442125 O.
. 022553148 -0
. 004416301 O
. 009665545 0.
. 034476602 -0
. 025977733 -0
. 002699036 0.
. 010480175 O.
. 032002546 -0
. 029632377 -0
. 0203449679 -0.0006713485

. 0200708700 -0.0004346696

. 023238939 -0.003659484 0
. 024821591 -0.004881682 0
. 011626945 0.007985632 O.
. 0194360411 0.0001868259 0.0198096930

015233129
001475052
003742883
004490213
009004412
009955746
001143053
003725782

003365887
021735918
007798383
010000627
004866441
004134864
002055394
003004035
014960588
009813423
014773927
006251579
017051743
009363427
012307894
009711457

coooooooo0000000

coococoooo

. 004406544
. 021195964
. 016030542

015040977
028616410
029513354

. 018329327
. 023487540

0. 022982508

. 002049312
. 011671397
. 009317046
. 014773125

015534575
021552913
016545078
034337478
029292391
004928748
013474575
036802521

. 029207029
. 007386758
. 010209464

0. 0190022710
0. 0192015309

015919971
015058228
027598210

This is pretty close to what was expected; in this particular case the true mean was not within the Cl in

six cases out of 100 (we expected about five).

To reiterate, understanding the difference between the SD and the SEM is critical. The SD gives us an

indication of how spread out the data in the underlying population is. The SEM is an indication of how

confident we are in our estimate of the true mean of the underlying population.

Many plots in publications show error bars. There is no standard as to what these represent; it could be
1SD, +SEM, +1.96SD, £1.96SEM, or, as we will see later, something else. If the publication does not
explicitly state what the error bars represent, they are of no use to you (and you might begin to question

the underlying analysis).
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